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Abstract

Motivated by our observations on RGB-T data that

pattern correlations are high-frequently recurred across

modalities also along sequence frames, in this paper, we

propose a cross-modal pattern-propagation (CMPP) track-

ing framework to diffuse instance patterns across RGB-

T data on spatial domain as well as temporal domain.

To bridge RGB-T modalities, the cross-modal correlation-

s on intra-modal paired pattern-affinities are derived to

reveal those latent cues between heterogenous modalities.

Through the correlations, the useful patterns may be mutu-

ally propagated between RGB-T modalities so as to fulfill

inter-modal pattern-propagation. Further, considering the

temporal continuity of sequence frames, we adopt the spir-

it of pattern propagation to dynamic temporal domain, in

which long-term historical contexts are adaptively corre-

lated and propagated into the current frame for more effec-

tive information inheritance. Extensive experiments demon-

strate that the effectiveness of our proposed CMPP, and the

new state-of-the-art results are achieved with the significant

improvements on two RGB-T object tracking benchmarks.

1. Introduction

Visual object tracking is a fundamental and challenging

task in the field of computer vision, has achieved significant

progresses over the past few years with the breakthrough of

deep neural network [8, 9, 19, 36, 39]. However, there are

still various existing difficulties in the scenes of low illumi-

nation, heavy occlusion and dark night, etc. As the essential

loss of object information, the current RGB-based tracker-

s are often overwhelmed in these scenes. On the contrary,

thermal infrared images can greatly reduce the influences

of lightings, and effectively compensate to RGB images for

identifying objects. This refers to the dual-modal RGB-T
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Figure 1: The statistical observation across visible RGB

and thermal infrared images. (a) Visual exhibition. The

points colored white are similar pairs across visible RGB

and thermal infrared images, while the pairs of black points

correspond to dissimilar pairs. (b) Statistical finding. Sim-

ilar/dissimilar pairs across two modalities as well as their

average statistics are with fairly high matching rates, which

provide strong cues for cross-modal pattern-propagation.

tracking, which has arisen increasing attention more recent-

ly due to the ease of use of thermal camera.

The existing RGB-T tracking methods [23, 24, 25, 29,

30, 31, 32] usually follow the conventional weighted fu-

sion on dual-modal (patch) features, or extend those classic

RGB-based tracking techniques. For instance, the weight-

s of modalities are integrated into sparse representation to

be learnt in [24, 27]; after splitting candidate regions in-

to patches, patch weights are adaptively learnt to construct

target representation in [25, 31, 32]; some critical channels

of all modalities are selected in [29, 46] according to their

confidences. In [30], the part-based RGB tracking method

is revised for dual-modal case, where the patches from t-

wo modalities are ranked in their importances for driving

a confident tracking. However, all these methods do not

deliberate also utilize the inner pattern-correlations cross

modalities and even sequence frames, whist the pattern-

correlations are high-frequently recurred therein.

To this end, we conduct statistical analysis about pat-

tern correlations on two large RGB-T tracking datasets, RG-
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BT234 [25] and GTOT [24]. The quantitative statistical re-

sults cross RGB and thermal images are shown in Fig. 1.

The affinity of pair pixels is defined by the Euclidean met-

ric on their gray values. The larger the affinity value is,

the more similar this pair of pixels are. According to the

affinity values, we define those similar pairs and dissimilar

pairs within each RGB or thermal image. Further a counter-

part of inter-modal pairs are determined on the condition of

the same affinity values at the same space position. In oth-

er word, the counterpart defines a matched relation pattern,

viewed as a second-order correlation. All matched inter-

modal pairs (i.e., pair counterparts) are summarized to pro-

duce the statistical ratios cross RGB and thermal modali-

ties. From this figure, we can observe that the pattern coun-

terparts of inter-modal pairs are high-frequently occurred

for the similar and dissimilar pairs. This case is named as

inter-modal pattern-correlation, which is a second-order re-

lationship (i.e., relation on relation). Besides, another ex-

plicit observation is that image patches tend to redundantly

recur many times across adjacent sequence frames because

of the continuity of sequence. Thus we can define the pat-

tern affinities across sequence frames, which is one-order

intra-modal pattern-correlation.

Just motivated by the above observations, in this pa-

per, we propose a cross-modal pattern-propagation (CMP-

P) tracking framework to diffuse instance patterns across

RGB and thermal infrared modalities, as well as within s-

ingle modality. In virtue of the cross-modal second-order

statistical correlations, we propose an inter-modal pattern-

propagation method to transmit patterns across heteroge-

nous modalities. To bridge them, the cross-modal corre-

lations on within-image affinities are derived to reveal those

associative patterns between different modalities. Through

the correlations, the useful patterns may be mutually prop-

agated between modalities so that feature information can

be compensated for each other. In view of the temporal

continuity of sequence frames, further, we extend the spir-

it of pattern propagation from cross-modal spatial domain

to temporal domain to construct dynamical pattern propa-

gations. In a sequence, long-term historical contexts are

adaptively correlated and propagated into the current frame

for more effective information inheritance during the on-

line tracking. Extensive experiments demonstrate that our

CMPP is greatly superior to those baselines as well as the

state-of-the-art methods.

In summary, our contributions are three folds:

• Based on our findings on RGB-T images, we propose

a cross-modal pattern-propagation framework to ex-

cavate and utilize those latent pattern cues for online

RGB-T object tracking.

• We jointly build inter-modal pattern-propagation vi-

a second-order affinity correlations for the interaction

across modalities, and long-term context-propagation

through high-order dynamic correlations for historical

information inheritance.

• We report the new state-of-the-art results on two RGB-

T object tracking benchmarks with the significant im-

provement.

2. Related Work

Visual Object Tracking. Recently correlation filter

based and CNN-based trackers achieve state-of-the-art per-

formances on the public visual object tracking benchmark-

s [41, 42]. MOSSE [2] firstly used adaptive filter for vi-

sual tracking, then numerous correlation filter based track-

ers sprung up and performed excellent in the yield of vi-

sual object tracking. Henriques et al. [17] used kernel

trick, Danelljan et al. [12] exploited color attributes as tar-

get features, and SAMF [33], KCF [18] used scale es-

timation to handle various target scale problems. CNN-

based methods regard tracking task as detection process.

MDNet [36] trained a general offline binary classification

model using multi-domain learning to distinguish target

from the background. RT-MDNet [19] introduced RoIAlign

method to extract more accurate representation for target.

Park et al. [37]exploited meta learning algorithm into MD-

Net, which adjusted initial model via temporal information

in tracking sequence for quick optimization. These track-

ers performed well but overwhelmed in the conditions of

low illumination, smog and dark night, etc., limited by the

inherent defects of RGB images.

RGB-T Object Tracking. RGB-T object tracking is

getting more and more attention due to the promotion of

thermal infrared data in tracking performance [13]. Sparse

representation based trackers performed well because of its

capability of suppressing noises and errors [24, 40, 23].

Wu et al. [40] concatenated the candidate regions of multi-

modal data and sparsely represented target in template s-

pace; Li et al. [24] proposed a collaborative sparse repre-

sentation model to jointly optimize the sparse coefficients

and modality weights. Furthermore, Li et al. [30] consid-

ered heterogeneous property between multi-modal source

in cross-modal ranking model, to learn patch-based weights

and construct target representation. Using neural network to

adaptively fuse multiple data also achieves excellent perfor-

mance. Li et al. [29] proposed a fusion net to select critical

feature channels for confident tracking; Zhu et al. [45] pro-

posed a feature aggregation network to weight multi-modal

and multi-scale features for robust target representation.

These methods utilize multi-modal data to construct target

representation by extracting factors or balancing their confi-

dences. They neglected the inner pattern-correlations across

multi-modal data, which are high-frequently recurred and

can be utilized for mutually complementing each other.
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Figure 2: Our proposed CMPP framework for RGB-T object tracking. There are two main modules to fulfill spatially cross-

modal and temporally sequent pattern propagation, corresponding to inter-modal pattern-propagation and long-term context

propagation respectively. The former builds and utilizes the correlations between pairwise bundling patterns, while the latter

leverages the continuity of pattern sequences. More details could be referred in Section 3. Zoom the figure for clear details.

3. Our Method

In this section, we introduce the proposed cross-modal

pattern-propagation method. We first overview the overall

architecture, and then illustrate how to perform inter-modal

pattern-propagation process for cross-modal spatial fusion,

finally expound long-term context propagation module for

temporal sequence encoding.

3.1. The Architecture

The overall network architecture of our proposed CMP-

P is shown as Fig. 2. In the online RGB-T object track-

ing, given a pair of frames {xR
t , xT

t } at time t, we need

to estimate the localization of tracked object. The can-

didate bounding boxes are first sampled around an initial

location of object, which is determined by the location at

time t − 1. To extract more discriminative representation,

we adopt VGG-M network [3] to filter each candidate re-

gion and produce multi-channel convolution feature maps.

By omitting the index of candidates, we abuse the notation

{XR
t ,XT

t } as the convolution features of one pair of dual-

modal candidates for more clear illustration below. Our aim

is to predict whether the candidates {XR
t ,XT

t } are the most

possible object.

In view of candidates {XR
t ,XT

t }, we propose an inter-

modal pattern-propagation (IMPP) method to mutually dif-

fuse patterns for each other. To bridge the difference be-

tween them, we attempt to leverage those latent cues of

second-order correlations as observed in Fig 1. Concretely,

the affinities of pairwise patterns within each candidate are

computed to mine and utilize the cues of bundling patterns,

which refers to intra-modal correlation computation. Nex-

t, the bundling patterns are compared across two modalities

by using their affinities, and the inter-modal correlations are

derived to favor cross-modal pattern propagation. The de-

tails could be found in Section 3.2.

For online object tracking, the historical sequent frames

can benefit the localization of moving object. To this end,

we further extend the spirit of pattern-propagation into the

dynamic sequence, and propose long-term context propa-

gation (LTCP, in Section 3.3) to adaptively inherit previous

historical information. Concretely, given the predicted dual-

modal objects {xt−il , · · · , xt−i1} at the former l frames,

we take IMPP to integrate them to produce the diffused fea-

tures {X̃t−il , · · · , X̃t−i1}. The cross-modal diffused fea-

tures are adaptively propagated into the current candidate

and further integrated with its diffused features X̃t as the

final response, which are fed into a binary classification net-

work. The binary classification network has three fully con-

nected layers followed by cross-entropy loss to estimate the

possibility of the candidates as background or foreground.

The first k confident candidates are used for regressing the

final location of object as used in MDNet [36].

Besides, we consider that different depth convolution-

al layers carry with different level feature information,

where the shallow convolutional layer expresses more lo-

cal texture information, while deep convolutional layer cap-

tures more global semantic information. For this, inte-

grating multi-scale pyramidal feature maps is customary to

boost the performance of many tasks such as object detec-

tion [1, 22, 35], classification [38, 7, 34], and semantic seg-
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mentation [5, 4, 44]. To this end, we downscale multi-layer

convolution feature maps into the smallest-scale map ac-

cording to the method proposed in [6], and then concatenate

them to fed into our proposed propagation method.

3.2. InterModal PatternPropagation

Suppose a candidate region contains n pixel points, each

pixel position is associated with a multi-dimensional feature

vector. We build graph topology on the candidate region,

where each pixel is viewed as one vertex. Abstractly, we

formulate inter-modal pattern propagation as

vTi ← f(vTi ) + λT
∑

j∈N (vi)

wijf(v
R
j ), (1)

vRi ← f(vRi ) + λR
∑

j∈N (vi)

wijf(v
T
j ), (2)

wij = C(A(f(v
T
i ), f(vTj )),A(f(vRi ), f(vRj ))), (3)

where f(·) are feature extractors of vertices {vTi , vRi },
A(·, ·) is an affinity computation function between two ver-

tices within a single-modal image, C(·, ·) is a cross-modal

correlation function between those pairwise vertices. The

score/weight wij indicates a certain latent cue between one

pattern-pair of RGB image and the other pattern-pair of the

corresponding thermal infrared image at the same spatial

position. The higher the weight is, the stronger the cue is

among them. If wij = 0, the corresponding pairs have no

any cues. Usually, we constrain the weight wij > 0 with the

global sparsity, which means non-dense edge connection-

s. Thus, we can construct the neighbor relationship N (vi)
based on the produced weights {wij}. The pattern propaga-

tion processes in Eqn. (1) and Eqn. (2) take the summation

aggregation through weighting on those adjacent patterns of

the counterpart modality, which followed by the pattern of

modality therein. The hyperparameters λT and λR are the

balance factors during the pattern propagation.

As multi-channel RGB-T features have the grid-shape

structure, we convert the calculation into the matrix formu-

lation. Given a pair of dual-modal candidates {XR,XT ∈
R

H×W×C}, where we omit the time information t for sim-

plification. Thus the number of vertices is n = H × W .

To conveniently define the matrix computation, we take a

format operation [XT ]: RH×W×C → R
n×C , which stack-

s spatial positions in a row-by-row way. The inter-modal

pattern correlations relationship between visible RGB and

thermal infrared features can be formulated as

C = σ(AT ⊙AR)/F, (4)

AT = S([fT
1 (XT )]× [fT

2 (XT )]⊺), (5)

AR = S([fR
1 (XR)]× [fR

2 (XR)]⊺), (6)

where ⊙ denotes the element-wise multiplication, σ is the

exponential function, F = σ(AT ⊙ AR) × 1 × 1
⊺ is the

C
N
N

C
N
N

C
N
N

C
N
N

C
N
N

C
N
N

HW×C

C×HW

C×HW

HW×C

Original RGB
Feature

Original Thermal
Feature

H×W×C

H×W×C

Instance 
patterns

Instance
patterns

HW×C

HW×C

H×W×C

H×W×C

Intra-Modal 
Affinity

Intra-Modal 
Affinity

Inter-Modal 
Correlation

HW×HW

HW×HW

HW×HW

(a) Illustration of inter-modal pattern-propagation process.

C
N
N

C
N
N

T×H×W×C

H×W×C

C/8×THW

HW×C/8

HW×THW

THW×C

H×W×C

Historical
patterns

Historical Pool

Current Feature

Pattern 
Correlation

(b) Illustration of long-term context-propagation process.

Figure 3: Two critical pattern-propagation modules. (a)

Inter-modal pattern correlations are defined on intra-

modal correlations, which compute the affinities of paired

bundling patterns in single modality. Based the correlation-

s, the patterns of one modality could be propagated into the

other modality, or oppositely. (b) The patterns of histori-

cal frames are correlated and propagated into the candidate

at the current frame feature for the use of long-term con-

texts. × and ⊙ denote matrix multiplication and element-

wise product respectively.

normalization factor, fT
1 , fT

2 , fR
1 , fR

2 are the convolutional

layers with 1×1 kernel to be learnt in the network, the affin-

ity matrices AT ,AR are computed by the inner production

on the feature matrices therein, and S(·) is the sparsity op-

eration to choose those important pairs for the construction

of sparse graph (e.g., set a threshold τ to mask those values

less than τ as zeros). Further, we define the pattern propa-

gation across the two modalities as

[X̃T ] = [XT ] + λT × C × [gR(XR)], (7)

[X̃R] = [XR] + λR × C × [gT (XT )], (8)
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where the nonlinear transformation gT , gR are the convolu-

tional layers with 1×1 kernel, λR, λT are adaptively learnt

balance factors. At last, we concatenate the two new-fused

features X̃
T , X̃R to form the RGB-T response output X̃.

The concrete network module is shown in Fig. 3(a).

3.3. LongTerm Context Propagation

Context information is very important in tracking task

for avoiding model drift [47, 14]. To this end, we construct a

historical information pool, which consists of those object-

s with high confidence and is usually dynamically updated

with sequence variations. We expect that the historical con-

text patterns can be propagated into the candidates of the

current frame to boost online object tracking performance.

Given anyone pair of dual-modal candidates {xR, xT }, we

can derive their fused feature X̃ based on the above IMP-

P module. Suppose the historical pool is the feature set of

l objects, {X̃t−il , X̃t−il−1
· · · , X̃t−i1}, we can define the

pattern correlations between them and the current candidate

X̃t. As they are all in the same feature space, we directly

compare inter-frame patterns. Formally,

[X̃t]← [X̃t] +
γ

G

l∑

k=1

Ct,t−ik [X̃t−ik ], (9)

Ct,t−ik = S([h1(X̃t)]× [h2(X̃t−ik)]
⊺), (10)

where the nonlinear transformation h1, h2 are designed as

the convolutional layers with 1 × 1 kernel to be learnt, G

is the normalization factor, which scales the sum of corre-

lation weights to be equal to 1 for each spatial position, γ
is a balance factor, and the correlation weight Ct,t−ik repre-

sents the relationship between the current candidate and the

previous historical frame t− ik. By adaptively learning the

weights, the historical patterns can be properly propagated

into the current candidate to enhance the feature informa-

tion for more robust object tracking. The concrete network

module is provided in Fig. 3(b).

4. Implementation Details

We implement our proposed CMPP on the PyTorch plat-

form with E5-2650@2.20GHz CPU and NVIDIA GeForce

GTX 2080Ti GPU. We use MDNet [36] as the backbone

to build our network, and elaborate the training as well as

online tracking strategy as follows.

4.1. Training Procedure

Pre-training. In this stage, we firstly remove LTCP

module and initialize the parameters of first three sequential

convolutional layers using the pre-trained VGG-M [3] net-

work. Then we crop positive and negative samples in train-

ing sequences and optimalize the cross-entropy loss by the

Stochastic Gradient Descent (SGD) [20] algorithm where

each domain is handled separately. In the iteration, we ran-

domly choose 8 frames, from which we crop 32 positive

(IoU in 0.7 ∼ 1.0) and 96 negative (IoU in 0 ∼ 0.5) samples

and construct minibatch in each video sequence. For multi-

domain learning, we set K fully connected layer branches

for K video sequences and train the network for 100K iter-

ations. We set the learning rate to 0.0001 for parameters of

the IMPP module and 0.001 for the rest. The weight decay

and momentum are fixed to 0.0005 and 0.9, respectively.

Training. We initialize our model using the pre-trained

network and train the whole model in this stage. For a video

sequence, we crop 32 positive and 96 negative samples from

a single frame as minibatch, and then crop 16 positive sam-

ples from 4 previous frames as the historical objects. We

fine-tune the parameters of IMPP module and three sequen-

tial convolutional layers with learning rate of 1e-6 while set

it to 0.0001 and 0.001 for parameters of LTCP module and

the rest respectively.

4.2. Online Tracking

In tracking, the K branches for multi-domain learning

are replaced by a single branch. Then the CMPP fine-tunes

the pre-trained network on the first frame. In the fine-tuning

stage, we crop 500 positive and 5000 negative samples with

the given ground-truth bounding box and train the model for

30 iterations. The learning rate is 0.0005 for parameters of

the first two fully connected layers and 0.005 for parame-

ters of the last one. After that we utilize the output features

to train a ridge regression module for bounding box regres-

sion. For the t-th frame, we crop 256 sample regions as

candidates {xi
t} under the guidance of predicted result in

the (t− 1)-th frame. Then we can obtain their positive and

negative scores. We find k candidates (k = 5) with the max-

imum positive scores and employ the bounding box regres-

sor to improve target localization accuracy, their mean value

can be seen as the optimal target state x∗, more details can

be referred in [36]. Moreover, historical pool is constructed

when online tracking begins. In each frame, we insert the

reliable prediction region whose positive score over zero in-

to the tail of historical pool, and pop the top one if there are

more than l frames in historical pool.

5. Experiment

5.1. Datasets and Evaluation Metrics

We implement our proposed CMPP framework on two

large RGB-T tracking benchmarks, GTOT [24] and RG-

BT234 [25], to demonstrate its effectiveness. The GTOT

dataset contains 50 spatially and temporally aligned visible

RGB and thermal infrared sequences, while the RGBT234

dataset includes 234 RGB-T videos and 12 annotated at-

tributes, which totally reach 234K frames. We select the

whole GTOT dataset as the training set when evaluating on
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RGBT234 and randomly select 70 videos of the RGBT234

dataset as the training set when evaluating on GTOT.

We utilize two widely used metrics, precision rate (PR)

and success rate (SR), to evaluate the tracking performance.

In a specific, PR is the percentage of frames whose Eu-

clidean distance between the predicted bounding box and

ground-truth within a manually set threshold (5 pixels in G-

TOT and 20 pixels in RGBT234). SR is the percentage of

frames whose overlap ratio between the predicted bounding

box and ground-truth larger than a specified threshold, and

we compute the SR score by the area under curves (AUC).

5.2. Comparison with Stateoftheart Trackers

Overall performance. We implement our CMPP on G-

TOT and RGBT234 benchmarks, and compare the track-

ing performances with state-of-the-art trackers, i.e., RG-

B trackers (including C-COT [11] and ECO [10]) and

RGB-T trackers (including MANet [26], DAPNet [46],

DAFNet [15], MaCNet [43], FANet [45], SGT [28],

Struck [16]+RGBT, SOWP [21]+RGBT, KCF [18]+RGBT,

L1-PF [40], and MDNet [36]+RGBT). MDNet+RGBT is

our baseline. We directly concatenate the multi-scale RG-

B and thermal infrared features and train the model on the

training set. The overall tracking performances are shown

in Fig. 4. Our CMPP achieves significant outstanding per-

formance over other state-of-the-art trackers for all metrics

on both two benchmarks. Specifically, on the RGBT234

benchmark, our CMPP achieves 82.3%/57.5% in PR/SR,

and has 6.0%/5.9% promotion over baseline, while on the

GTOT benchmark, our CMPP achieves 92.6%/73.8% in

PR/SR, and has 9.3%/6.2% improvement against the base-

line. The excited performance and significant promotion

demonstrate the effectiveness of our proposed framework.

Attribute-based performance. To further demon-

strate the effectiveness of our proposed CMPP method, we

plot the attribute-based performance on RGBT234. RG-

BT234 dataset contains 12 annotated attributes, including

no occlusion (NO), partial occlusion (PO), heavy occlu-

sion (HO), low illumination (LI), low resolution (LR), ther-

mal crossover (TC), deformation (DEF), fast motion (FM),

scale variation (SV), motion blur (MB), camera moving

(CM) and background clutter (BC). The tracking results are

shown in Table 1. We can observe that the proposed method

significantly outperforms other trackers in the most anno-

tated attributions. Specifically, in the challenge of low il-

lumination, low resolution, thermal crossover and fast mo-

tion, our CMPP achieves around 10% promotion in PR/SR

against baseline. In these scenes, single modal data is unre-

liable, such as RGB images with low illumination and ther-

mal infrared images with thermal crossover. Considering

all intra-modal affinity relationships, our CMPP can obtain

confident inter-modal correlations, which are utilized to ex-

tract reliable instance patterns from the high quality images
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Figure 4: Overall performances comparison with state-of-

the-art trackers on RGBT234 (a) and GTOT (b).

and propagate them into the ropey ones to enhance their dis-

crimination. Besides, in the challenge of thermal crossover

(TC), the single modal tracker C-COT achieves the best per-

formance because the thermal infrared data is extremely un-

reliable and is viewed as noise. Even so, our CMPP can still

achieve a comparable performance after fusing the branch

of unconfident thermal infrared data, which again demon-

strates the effectiveness of our CMPP.

5.3. Ablation Study

Single/dual-modal data. To demonstrate the effective-

ness of multi-modal data, we plot the tracking performances

of CMPP+RGB, CMPP+T, and CMPP. CMPP+RGB and

CMPP+T denote the experiments of our method with RG-

B and thermal infrared modality respectively. The tracking

performances are shown in Fig. 5(a). The CMPP is sig-

nificantly better than the experiments with single modali-

ty input, and demonstrates the great promotion of multiple

modalities data in the visual object tracking task.

Prune experiments. To validate the effectiveness of our

major contributions, we implement two variants, includ-

ing 1) w/o-LTCP, that prunes long-term context propaga-

tion module, 2) w/o-IMPP, that prunes inter-modal pattern-

propagation module. The comparison results on RGBT234

are shown in Fig. 5(b). We draw two conclusions from the

results. 1) The w/o-LTCP and w/o-IMPP frameworks out-

perform baseline(MDNet+RGBT) as well as other state-of-

the-art RGB-T trackers, demonstrating the effectiveness of

our proposed IMPP and LTCP modules respectively, 2) The

CMPP method performs better than the pruned frameworks,

demonstrating that the IMPP and LTCP can improve track-
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Table 1: Attribute-based PR/SR scores(%) on RGBT234 dataset against state-of-the-art trackers. The best, second and third

performances are represented in red, green, and blue respectively.

ECO [10] C-COT [11] FANet [45] DAPNet [46] MaCNet [43] DAFNet [15] MDNet+RGBT CMPP

NO 88.0/65.5 88.8/65.6 84.7/61.1 90.0/64.4 92.7/66.5 90.0/63.6 89.5/62.6 95.6/67.8

PO 72.2/53.4 74.1/54.1 78.3/54.7 82.1/57.4 81.1/57.2 85.9/58.8 79.6/53.5 85.5/60.1

HO 60.4/43.2 60.9/42.7 70.8/48.1 66.0/45.7 70.9/48.8 68.6/45.9 67.0/44.9 73.2/50.3

LI 63.5/45.0 64.8/45.4 72.7/48.8 77.5/53.0 77.7/52.7 81.2/54.2 74.5/48.1 86.2/58.4

LR 68.7/46.4 73.1/49.4 74.5/50.8 75.0/51.0 78.3/52.3 81.8/53.8 75.8/48.9 86.5/57.1

TC 82.1/60.9 84.0/61.0 79.6/56.2 76.8/54.3 77.0/56.3 81.1/58.3 73.9/51.1 83.5/58.3

DEF 62.2/45.8 63.4/46.3 70.4/50.3 71.7/51.8 73.1/51.4 74.1/51.5 70.8/50.0 75.0/54.1

FM 57.0/39.5 62.8/41.8 63.3/41.7 67.0/44.3 72.8/47.1 74.0/46.5 66.4/43.3 78.6/50.8

SV 74.0/55.8 76.2/56.2 77.0/53.5 78.0/54.2 78.7/56.1 79.1/54.4 76.8/52.0 81.5/57.2

MB 68.9/52.3 67.3/49.5 67.4/48.0 65.3/46.7 71.6/52.5 70.8/50.0 67.8/48.0 75.4/54.1

CM 63.9/47.7 65.9/47.3 66.8/47.4 66.8/47.4 71.7/51.7 72.3/50.6 71.0/50.1 75.6/54.1

BC 57.9/39.9 59.1/39.9 71.0/47.8 71.7/48.4 77.8/50.1 79.1/49.3 74.4/48.9 83.2/53.8

ALL 70.2/51.4 71.4/51.4 76.4/53.2 76.6/53.7 79.0/55.4 79.6/54.4 76.3/51.6 82.3/57.5

ing performance from different aspects and jointly promote

the tracking results to a certain extent.

Model parameters comparison. The length of histor-

ical frames l and balance factor γ in the long-term con-

text propagation module are critical hyperparameters in our

proposed framework. We manually set l={8,16,32,64} and

γ={0.01,0.02,0.03,0.04,0.05} to analyze their influences.

The tracking performances on RGBT234 are shown in Ta-

ble 2. The tracker achieves the best performance with

γ=0.02 and l=32. By observing the tracking performances,

we can find that the tracker performs better when there are

more historical frames involved, because the LTCP module

can properly propagate more historical confident informa-

tion from longer previous frames to the current frame. Con-

versely, the performances are worse when the balance factor

γ is too large (γ=0.05) or too small (γ=0.01), because too

much propagation historical information might overwhelm

the current feature, while too less propagation historical in-

formation tends to result in the model drift.

Modality-missed experiments. Our CMPP module can

obtain reliable instance patterns and propagate across multi-

ple modalities to enhance target representation, even when

a branch of modality data is lost. The main reason is that

the unharmed modality can timely compensate for the lost

one through the use of inter-modal correlations as shown in

Fig. 3(a). To test this case, we conduct the modality-missed

experiments by disturbing an image pair with a certain prob-

ability. Concretely, we randomly mask RGB or thermal in-

frared image at a time step to simulate the modality losing,

which is named modality-missed experiment and performed

on RGBT234 dataset.

We manually set mask ratios r={0.1,0.2,0.3,0.4,0.5} and

plot the success ratio (SR) variation curve of our CMPP

and baseline. The experiment results are shown in Fig. 7.
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(a) single/dual-modalities experiments
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Figure 5: Performances comparison of single/dual-

modalities (a) and prune (b) experiments on RGBT234.

Our CMPP obviously decreases slower than baseline with

the increase of mask ratio. Compared with the case of no

mask, the decline of our CMPP framework and baseline

are 2.7% and 4.8% respectively, even when masking 50%

frames. The experiments demonstrate the robustness of our

CMPP to the case of modality losing.

5.4. Qualitative performances

The visual comparisons between our proposed CMPP

method and the other state-of-the-art trackers are shown in

Fig. 6, including MDNet [36]+RGBT, SOWP [21]+RGBT,

SGT [28], and C-COT [11]. Our approach performs obvi-
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(a) bikeman (d) whiteman1

CMPP SGT MDNet+RGBT SOWP+RGBT C-COT

(b) elecbikeinfrontcar (c) children4

GroundTruth

Figure 6: Qualitative comparison between CMPP and other state-of-the-art trackers on four video sequences.

Table 2: Performances (PR/SR) comparison of different pa-

rameters on RGBT234. The best, second and third perfor-

mance are represented in red, green, and blue respectively.

PR/SR(%) l=8 l=16 l=32 l=64

γ=0.01 81.1/56.6 79.1/55.7 80.7/56.3 80.1/56.0

γ=0.02 80.2/56.1 80.8/56.3 82.3/57.5 82.2/57.2

γ=0.03 79.5/55.7 81.4/56.9 80.8/56.6 80.2/56.2

γ=0.04 80.3/56.1 80.7/56.7 81.6/57.0 82.1/57.3

γ=0.05 81.3/56.7 80.1/56.1 81.1/56.4 79.7/56.0

ously better than other trackers in various challenges, such

as heavy occlusion, low illumination, low resolution, and

background clutter. For instance, Fig. 6(a) and Fig. 6(b)

show the tracking results of video sequences with low illu-

mination and background clutter. Our tracker can localize

the target well while others lose the tracked target when the

light condition sharply changes. In Fig. 6(c) and Fig. 6(d),

which have background clutter, low resolution and heavy

occlusion attributes, our approach can benefit from the joint

intra-modal and inter-modal pattern propagation strategies

to achieve excellent object localization.

5.5. Efficiency Analysis

Our method mainly contains two modules: IMPP and

LTCP. The complexities are O(H2W 2C + EHWC) and

O(H2W 2CL) respectively, where H,W,C,L are height,

width, channel number and memory pool size, and E ≪
HW is the nonzero-value number in the sparse matrix C. In

practice, our CMPP is 1.3FPS on RGBT234 while the base-

line is 1.5FPS, on par with MDNet-based RGBT trackers

such as MANet (1.1FPS) and FANet (1.3FPS). Actually, the

backbone network (MDNet) dominates the running time.

6. Conclusion

In this paper, we proposed a cross-modal pattern-

propagation (CMPP) RGB-T tracking method, consisting

of an inter-modal pattern-propagation (IMPP) and a long-
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Figure 7: Performances (SR) comparison between CMPP

and MDNet+RGBT with a specified mask ratio.

term context propagation (LTCP) module. In virtue of intra-

modal affinity relationships of dual modalities, the IMPP

module can derive confident inter-modal correlations to ob-

tain reliable instance patterns and propagate them across d-

ual modalities to enhance original features. Such an IMPP

process effectively integrates dual-modal information, and

results in the robustness of tracking even for modality los-

ing. In LTCP module, long-term context information can

be well inherited under the guidance of correlations be-

tween previous historical frames and the current frame, and

thus can relieve model drift to some extent in online track-

ing phase. We conducted extensive experiments on two

large RGB-T datasets, and validated the effectiveness of our

method as well as the main modules therein. In the future,

we will extend our idea to more modalities to further boost

tracking performance.
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